The sulfonated osmolyte N-methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine.
نویسندگان
چکیده
Selective enrichments yielded bacterial cultures able to utilize the osmolyte N-methyltaurine as sole source of carbon and energy or as sole source of fixed nitrogen for aerobic growth. Strain MT1, which degraded N-methyltaurine as a sole source of carbon concomitantly with growth, was identified as a strain of Alcaligenes faecalis. Stoichiometric amounts of methylamine, whose identity was confirmed by matrix-assisted, laser-desorption ionization time-of-flight mass spectrometry, and of sulfate were released during growth. Inducible N-methyltaurine dehydrogenase, sulfoacetaldehyde acetyltransferase (Xsc) and a sulfite dehydrogenase could be detected. Taurine dehydrogenase was also present and it was hypothesized that taurine dehydrogenase has a substrate range that includes N-methyltaurine. Partial sequences of a tauY-like gene (encoding the putative large component of taurine dehydrogenase) and an xsc gene were obtained by PCR with degenerate primers. Strain N-MT utilized N-methyltaurine as a sole source of fixed nitrogen for growth and could also utilize the compound as sole source of carbon. This bacterium was identified as a strain of Paracoccus versutus. This organism also expressed inducible (N-methyl)taurine dehydrogenase, Xsc and a sulfite dehydrogenase. The presence of a gene cluster with high identity to a larger cluster from Paracoccus pantotrophus NKNCYSA, which is now known to dissimilate N-methyltaurine via Xsc, allowed most of the overall pathway, including transport and excretion, to be defined. N-Methyltaurine is thus another compound whose catabolism is channelled directly through sulfoacetaldehyde.
منابع مشابه
Amphoteric surfactant N-oleoyl-N-methyltaurine utilized by Pseudomonas alcaligenes with excretion of N-methyltaurine.
The amphoteric surfactant N-oleoyl-N-methyltaurine, which is in use in skin-care products, was utilized by aerobic bacteria as the sole source of carbon or of nitrogen in enrichment cultures. One isolate, which was identified as Pseudomonas alcaligenes, grew with the xenobiotic compound as the sole source of carbon and energy. The sulfonate moiety, N-methyltaurine, was excreted quantitatively d...
متن کاملCloning and sequencing of the gene coding for the large subunit of methylamine dehydrogenase from Thiobacillus versutus.
The gene that codes for the alpha-subunit of methylamine dehydrogenase from Thiobacillus versutus, madA, was cloned and sequenced. It codes for a protein of 395 amino acids preceded by a leader sequence of 31 amino acids. The derived amino acid sequence was confirmed by partial amino acid sequencing. The start of the mature protein could not be determined by direct sequencing, since the N termi...
متن کاملLocalization of periplasmic redox proteins of Alcaligenes faecalis by a modified general method for fractionating gram-negative bacteria.
A lysozyme-osmotic shock method is described for fractionation of Alcaligenes faecalis which uses glucose to adjust osmotic strength and multiple osmotic shocks. During phenylethylamine-dependent growth, aromatic amine dehydrogenase, azurin, and a single cytochrome c were localized in the periplasm. Their induction patterns are different from those for the related quinoprotein methylamine dehyd...
متن کاملThe First Study of Investigation of Clinical Isolates of Alcaligenes Xylosoxidans and Alcaligenes Faecalis by Phenotypic and Genetic Methods in Iran
Background and Objective: Alcaligenes sp. is a non-fermentative Gram-negative bacillus, which causes nosocomial infections, including urinary tract infections, pneumonia, sepsis, and may be confused with Pseudomonas aeruginosa. Alcaligenes infections usually are not well identified and due to possible errors and similarities with Pseudomonas, their diagnosis with phenotypic tests is not suffici...
متن کاملMicrobial Enhanced Oil Recovery Using Biosurfactant Produced by Alcaligenes faecalis
A bacterial strain (designated as Alcaligenes sp. MS-103) isolated from oil sample of the Aghajari oilfield in the south of Iran, was able to produce an effective extracellular lipopolysaccharide biosurfactant (1.2±0.05 g/l) on molasses as a sole carbon source. The highest surface tension reduction to level 20 mN/m was achieved by biosurfactant produced by cells grown on molasses under optimum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 152 Pt 4 شماره
صفحات -
تاریخ انتشار 2006